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Abstract

A method for coupling atomistic and continuum models across a subdomain, or bridge region, is
presented. Coupling is effected through a force-based blending model. The method properly accounts
for the the atomistic and continuum contributions to the force balance at points in the bridge region.
Simple patch tests and computational experiments are used to study the method and its properties
in one dimension. A discussion of implementation issues in higher dimensions is provided.

1 Introduction

The need to couple atomistic and continuum models arises for two reasons. First, although an atomistic
model may be valid throughout the material sample, it may be prohibitively expensive to use due to
the large number of particles needed in a simulation. Second, a continuum model may not adequately
represent singular phenomena, e.g., cracks and dislocations, that occur at the microscale. So, in the
vicinity of such singularities, one would like to use an atomistic model. The specific setting we study is
one where a continuum, macroscale model is valid in a (possibly large) part of a material sample, but
for which there are also regions where that model breaks down and one needs to invoke an alternative
atomistic model to account for microscale information. The issue then arises of how one couples the two
models. Many different approaches to couple atomistic and continuum domains have been proposed;
see any of the reviews [2, 5, 7, 8, 10].

The setting we consider is one where an atomistic model is employed in one region, a continuum
model is employed in another region, and the two models are somehow “merged” in a third, bridge,
region. Several previous studies have been devoted to this approach. Näıve coupling of the two models
in the bridge region can lead to nonphysical results due to an incorrect accounting of the forces acting
in that region. Here, we develop a model for which atomistic and continuum forces are blended in such
a way that their contributions follow from mechanical considerations, e.g. satisfy Newton’s second and
third laws. Previous attempts at achieving such blending can be found in [3] for continuum-to-continuum
coupling and [1, 4, 11] for atomistic-to-continuum coupling. In those studies, coupling or blending was
effected solely through the constraints that tie together the atomistic and continuum displacements in
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the bridge region; blending does not occur in the force balance equations themselves. In this paper,
coupling or blending is effected at the force level so that the force balance equations are fully coupled.

Our paper is organized as follows. In Section 2, we develop the blended atomistic-continuum model.
A usable form of the model for which the continuum part of the model is discretized using finite element
methods is discussed in Section 3; that section also provides a brief discussion of the ghost force effect
as it relates to our method. In Section 4, the one-dimensional version of the blended model is subjected
to a simple patch test as a first step towards its validation. Important details about the model and its
implementation in higher dimensions are discussed in Section 5. In Section 6, we present the results
of some computational experiments that illustrate the use of our method and, finally, in Section 7, we
provide some brief concluding remarks.

2 The blended model

We subdivide the given body Ω into three disjoint regions Ωa, Ωb, and Ωc, with Ωb sandwiched in some
way between the other two, see Figure 1. We make the following assumptions:

• the atomistic model is valid throughout, and in particular in the atomistic region Ωa and in the
bridge region Ωb;

• the continuum model is valid in the continuum region Ωc and in the bridge region Ωb.

Figure 1: The atomistic domain (left), the continuum domain (right), and the bridge domain (center).

Since the atomistic model holds throughout Ω, one could, in principle, use it to solve a problem
of interest without invoking the continuum model. However, we assume that such a calculation is
prohibitively expensive, i.e., it would involve too many particles1. Thus, we want to use the continuum
model in the region Ωc in which it is valid, use the atomistic model in the region Ωa where the continuum
model is not valid, and somehow “seamlessly” join the two models together using the bridge region Ωb.
The method we use to effect this joining follows the principles:

• the atomistic model “dominates” the continuum model near the interface surface between the
atomistic and bridge regions;

• the continuum model “dominates” the atomistic model near the interface surface between the
continuum and bridge regions.

We make these statements more precise in Section 2.3.

1Throughout the paper we use the term “particle” to underscore the fact that our blending method is applicable
to configurations where the microscale model is given in terms of “particles” that are not necessarily atoms.
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2.1 The atomistic region

We assume that, in addition to an externally applied force, the force on the particle α located at the
position xα is due only to those particles within the ball2 Bα = {x ∈ Ω : |x− xα| ≤ δ} for some given
δ. Let Nα = {β |xβ ∈ Bα, β 6= α}, i.e., Nα is the set of the indices of the particles located within Bα,
other than the particle located at xα itself. Then, the force fα on the atomistic particle α located at
the position xα due to the other particles is given by

fα =
∑
β∈Nα

fα,β, (1)

where fα,β denotes the force acting on particle α due to particle β. See Figure 2. In the atomistic
region, force equilibrium requires that, for any particle α, we have the force balance

fα + f eα = 0

or ∑
β∈Nα

fα,β + f eα = 0, (2)

where f eα denotes the external force applied to the particle α.

Figure 2: Force balance at a particle for the atomistic model (left) and at a point for the continuum
model (right).

2.2 The continuum region

Cauchy hypothesis implies that for any continuum volume ω enclosing the point x, the force acting on
that volume by the material surrounding is given by

fc = −
∫
γ
σ · n dγ, (3)

where γ denotes the boundary of ω and σ denotes the stress tensor. See Figure 2. We assume that
σ(x) = σ

(
x,∇u(x)

)
and is possibly nonlinear in both its arguments; here u(x) denotes the continuous

2We make no assumption about the size of δ so that it may be large, i.e., Bα may include many particles.
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displacement at the point x. For a homogeneous material, σ(x) = σ
(
∇u(x)

)
, the stress does not

explicitly depend on position. This is due to the observation that −σ · n is the stress force acting on a
point on γ. In the equilibrium state, we have that

−
∫
γ
σ · n dγ +

∫
ω
bc dω = 0,

where bc is the externally applied volumetric force. We then have that∫
ω

(
∇ · σ + bc

)
dω = 0.

Since ω is arbitrary, we conclude that at any point x in the continuum region, we have the force balance

∇ · σ + bc = 0. (4)

2.3 The bridge region

In the bridge region Ωb, we have assumed that both the atomistic and continuum models are valid. We
want to “blend” the two models to create a single model for the bridge region that transitions from the
atomistic model to the continuum model that satisfies Newton’s second and third laws. We choose to
blend the two models at the level of forces acting at points.

We have that (2) and (4) hold in the bridge region. The most straightforward blending of forces
produces the blended model ξ

(
∇ · σ + bc

)
+ θα

( ∑
β∈Nα

fα,β + f eα
)

= 0 if x = xα

ξ
(
∇ · σ + bc

)
= 0 otherwise,

(5)

where θ(x) and ξ(x) are blending functions; note that θα ≡ θ(xα) is defined for each atom and that
ξ(x) is defined at all points in the bridge region. We will choose our blending functions such that

ξ(x) = 1 in Ωc,
θ(x) = 1 in Ωa,

θ(x) + ξ(x) = 1 in Ω.

One simple choice is to make the blending functions linear in Ωb, giving greater weight to the continuum
model near the interface between Ωc and Ωb, and greater weight to the atomistic model near the interface
between Ωa and Ωb. We refer to [4] for alternative expressions of the blending functions.

We claim that the blended model (5) violates Newton’s third law of motion. Consider the atomistic
term in (5); it implies that the force on particle α due to particle β is given by θαfα,β. But, if we reverse
the roles of α and β, the force on particle β due to particle α would be θβfβ,α = −θβfα,β. Since, in
general, θβ 6= θα, we have a violation of Newton’s third law that requires the force on particle α due to
particle β to be equal and opposite to the force on particle β due to particle α. A similar argument can
be presented to show that the continuum part of (5) also violates Newton’s third law. We remark that a
related problem with (5) is that it is not a symmetric set of equations, even when each of the atomistic
and continuum models are symmetric as is the case, e.g., for linear spring-mass systems coupled to the
equations of linear elasticity.

The blending AtC model introduced by Belytschko and Xiao in [1] can be cast in this form. However,
the blended energy functional proposed leads to a non-symmetric system of equations that violates
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Newton’s third law. In Section 6 we present some numerical tests that show the deleterious effect of
the non-symmetry on the accuracy of the blended model.

To obtain a blended model that satisfies Newton’s third law we have to start with the definition of
force. We define the force on particle α due to the other particles in its cut-off region Bα by

fα =
∑
β∈Nα

θα,βfα,β, (6)

where θα,β is a symmetric3 function of xα, xβ. See Figure 3. The definition in (6) should be contrasted
with what is used in (5) where that force is defined as θα

∑
β∈Nα fα,β. This means that

θα,β = θβ,α, (7)

and so Newton’s third law is satisfied, i.e., θα,βfα,β = −θβ,αfβ,α. Then, the atomistic contribution to
the force acting on a particle located at the point xα ∈ Ωb is given by∑

β∈Nα

θα,βfα,β + θαf eα. (8)

Figure 3: Blended force balance at a particle in the bridge region.

A similar approach can be followed to determine the continuum contribution to the blended model.
We replace (3) by

fc = −
∫
γ
ξσ · n dγ, (9)

where ξ(x) will be defined later. See Figure 3. As a result, in the bridge region the total force acting
on an arbitrary volume ω ⊂ Ωb is replaced by

−
∫
γ
ξσ · n dγ +

∫
ω
ξbc dω .

3In practice, to define θα,β one first defines a function θ(x) over the bridge region and then defines θα,β from θ. The
obvious choices are

θα,β = θ
“xα + xβ

2

”
or θα,β =

θα + θβ
2

,

where θα = θ(xα), as before.
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Since ω is arbitrary, the continuum contribution to the force acting at the point x ∈ Ωb is given by

∇ · (ξσ) + ξbc. (10)

The blended model is then the force balance given by the sum of (8) and (10), i.e.,
(
∇ · ξσ + ξbc

)
+
( ∑
β∈Nα

θα,βfα,β + θαf eα
)

= 0 if x = xα, α = 1, . . . , N(
∇ · ξσ + ξbc

)
= 0 otherwise,

(11)

where N is the total number of particles in Ωa∪Ωb. In addition, boundary conditions on the displacement
or traction are specified on that part of the boundary of Ω which is also a boundary of Ωc ∪ Ωb. The
positions of particles near or on that part of the boundary of Ω which is also a boundary of Ωa can also
be specified. Note that if ξ(x) = 0 and θ(x) = 1, then (11) reduces to the atomistic model (2) and if
ξ(x) = 1 and θ(x) = 0, then (11) reduces to the continuum model (4).

A compactly expressed weak formulation of (2), (4), and (11) is given by

−
∫

Ω
ξσ : ∇w dΩ +

N∑
α=1

∑
β∈Nα

θα,βfα,β ·w(xα)

= −
∫

Ω
ξbc ·w dΩ−

∫
Γt

ξt̃ ·w dΓ−
N∑
α=1

θαf eα ·w(xα),

(12)

where Γt that part of the boundary of Ωc ∪ Ωb on which traction force t̃ is specified. In (12), w is a
test function, or variation, chosen from a suitable class of functions.

In (12), it is possible, indeed, it is probable, for some particles located in Ωb to interact with particles
located in Ωc, i.e., for a particle located at xα ∈ Ωb, there is at least one β ∈ Nα such that xβ ∈ Ωc.
We cannot rely on the blending function θ to eliminate this interaction, even though θβ = θ(xβ) = 0
if xβ ∈ Ωc. It is possible that θα,β 6= 0 because it depends on both θβ and θα. Whenever this occurs,
we merely set the needed atomistic displacement for the particle located at xβ ∈ Ωc to be the same as
the finite element approximation to the continuous displacement at that point. We discuss in Section
3.1 how this helps to eliminate ghost forces. We will also pose similar constraints on the atomistic
displacements in the blended region. These will be discussed in the next section.

3 The discrete equations

Based on a triangulation of Ωc∪Ωb, we define a nodal-based finite element space4 Wh ⊂ H1(Ωc∪Ωb).
The approximation to the continuous displacement is denoted by uh and we let σh = σ(uh). We let
{wh

j }Jj=1 denote a basis for Wh. For j = 1, . . . , J , we let Sj = {α |xα ∈ supp(wh
j )}, i.e., Sj is the set

of particle indices such that the particle is located within the support of the finite element basis function

4The definition of the space Wh may require that the restriction of its members to part or all of the boundary of
Ωc ∪ Ωb vanish.
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wh
j ). Then, in (12), we first choose w = wh

j , j = 1, . . . , J , to obtain the first set of discrete equations

−
∫

supp(wh
j )
ξσh : ∇wh

j dΩ +
∑
α∈Sj

∑
β∈Nα

θα,βfα,β ·wh
j (xα)

= −
∫

supp(wh
j )
ξbc ·wh

j dΩ−
∫

Γt∩supp(wh
j )
ξt̃ ·wh

j dΓ

−
∑
α∈Sj

θαf eα ·wh
j (xα) for j = 1, . . . , J.

(13)

Note that, in (13), test functions are defined with respect to finite element nodes in both Ωc and Ωb.
We next want to choose test functions wα(x) that correspond to the particles. The support neigh-

borhood of the function wα(x) should be small enough so that it encloses only the single particle
located at xα. Moreover, the support should be small enough so that for all particles α located in Ωa,
supp wα(x) ∈ Ωa. This last assumption guarantees that the integral terms in (12) vanish whenever
the test function wα corresponds to a particle in Ωa. Additionally, wα(x) should be smooth enough
so that it can be evaluated at points in Ωa ∩ Ωb and for the integrals terms in (12) to be well defined.
The most straightforward way to choose wα(x) satisfying all of these conditions is to first construct
a triangulation of the particle positions, and then define the continuous (with respect to Ωa ∩ Ωb),
piecewise linear polynomial functions φα(x) with respect to the triangulation. Note that, in this case,
φα(xβ) = δαβ. We then choose, for each α = 1, . . . , N , wα(x) = eiφα(x) with i = 1, 2, 3; here, ei is
the unit vector in the i-th direction.

It is convenient for later reference to divide the particles into those that belong to Ωa and those that
belong to Ωb. Without loss of generality, we assume that the first Na particles are located in Ωa and
the remaining Nb = N − Na particles are located in Ωb. Furthermore, also without loss of generality,
we assume that the particles in Ωa may be further subdivided such that for α = 1 . . . , Naa, the particle
α has no “neighbors” in Ωb, i.e., such that xβ ∈ Bα implies that xβ ∈ Ωa. The remaining Na − Naa

particles located in Ωa have at least one of the particles in its cut-off region Bα located in Ωb.
We then have from (12) with w = wα that∑

β∈Nα

fα,β = −f eα for α = 1, . . . , Naa, (14)

∑
β∈Nα

θα,βfα,β = −θαf eα for α = Naa + 1, . . . , Na, (15)

and ∑
β∈Nα

θα,βwα(xα) · fα,β −
∫

supp(wα)
ξσh : ∇wα dΩ = −θαwα(xα) · f eα

−
∫

supp(wα)
ξb ·wα dΩ−

∫
Γt∩supp(wα)

ξt̃ ·wα dΓ for α = Na + 1 . . . , N.
(16)

The (nonlinear) system of discrete equations (13)–(16) consists, in d dimensions, of d(J + N)
equations in d(J+N) unknowns. However, this system of equations may be ill-conditioned, or not even
have a solution.

To ameliorate the situation, we impose the following constraints on the particle displacements in Ωb:

uα = uh(xα) for α = Na + 1 . . . , N, (17)
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i.e., the particle displacements are determined by evaluating the finite element displacement at the
position of the particle. If we view (17) as a set of essential constraints for the discrete system (13)–(16)
that are to be enforced strongly, we should not include in that system those equations that correspond
to test functions that are associated with particles in Ωb, i.e., we do not include (16). Thus, the discrete
system reduces to (13)–(15) and (17). Note that the constraints (17) can be explicitly substituted
into (13) in which case (13)–(15) reduces to a system of d(J +Na) equations in the same number of
unknowns.

Adding the constraints in (17) to the system (13)–(14) results in a mathematically well-posed
problem. However, (17) may physically over-constrain the problem. In Section 7, we will further discuss
this issue.

3.1 Ghost forces

Ghost, or spurious, forces are a ubiquitous plague for atomistic-continuum coupling methods and arise
due to approximations made when addressing the local/nonlocal interface in the bridge region. Un-
fortunately, ghost forces are generated and must be explicitly corrected for otherwise nonsymmetric
momentum equations are generated, and so Newton’s third law is not satisfied. For example, see the
lucid discussions in [2, 9].

In the blending schemes we consider, ghost forces arise because particles in the bridge region share
bonds with particles that should be in the continuum region.5 To correct for these ghost forces, we
account for these bonds by placing ghost atoms in the continuum region and constraining them according
to (17). Following our assumptions in Section 2, if the atomistic and continuum models are both valid
in the blend region, this process will exactly correct for ghost forces in the bridge region.

If we choose not to add ghost atoms in the continuum region, our method has an implicit mechanism
to minimize ghost force effects. Let us examine the atomistic contribution to (13) that, for each particle
α ∈ Sj , is given by ∑

β∈Nα

θα,βfα,β ·wh
j (xα) + θαf eα ·wh

j (xα).

Now, suppose that for some β ∈ Nα, the particle β is located in the continuum region. Note that
although θ(xβ) = 0 for such a particle, in general θα,β 6= 0, i.e., the particle α in the bridge region
still feels a force from the particle β in the continuum region. Any uncorrected ghost forces are greatly
reduced because θα,β � 1 for particles α near the bridge/continuum interface and particles β in the
continuum region. In other words, any ghost force produced will be multiplied by the small factor θα,β.
Our discussion holds equally well for the atomistic contribution to (16).

The recently proposed atomic-scale FEM [6] purports to overcome ghost forces by developing atomic-
scale element stiffness matrices that capture nonlocal effects intrinsic to multi-body interatomic poten-
tials. The efficacy of this approach depends upon the ability to generate constitutive models needed
directly from molecular mechanical considerations, and transition elements between the atomic-scale
and conventional FEM. In contrast, blended approaches allow one to reuse continuum and atomistic
models including their constitutive relations, albeit at the cost of mitigating ghost forces.

5It is conceivable, e.g., for narrow bridge regions or for problems involving long-range interactions, that particles
in the atomistic region are also affected by particles located in the continuum region.
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4 A simple 1D example and the patch test

4.1 A simple, linear 1D example

We let Ω = (0, 1), Ωa = (0, a), Ωb = (a, c), and Ωc = (c, 1). See Figure 4. In Ωc ∪ Ωb = [a, 1], we
have a uniform finite element triangulation with grid size h given by xj = a + (j − 1)h, j = 1, . . . , J .
We choose the W h to be the continuous, piecewise linear finite element space with respect to the
triangulation. We let uhj = uh(xj), i.e., the nodal value of the finite element approximation to the
continuum displacement evaluated at the node xj . We also assume only nearest-neighbor atomistic
interactions. In Ωa ∪ Ωb = [0, c], we have a uniform particle lattice6 with lattice spacing s given by
xα = (α − 1)s, α = 1, . . . , N . The displacement of particle α is denoted by uα. We assume that the
bridging region is defined by the finite element grid. That is to say, we assume that the left-most and
right-most finite element nodes are located at x = a and x = c, respectively. This assumption leads to
a more convenient implementation of the algorithm in two or three dimensional space dimensions.

Figure 4: Particle positions and finite element grid for commensurate grids with h = 2s.

We assume that u1 = A and uhJ = B for given A and B, i.e., the atomistic displacement is specified
for the particle located at x = 0 and the continuum displacement is specified at x = 1.

We consider the example of the linear elasticity/linear spring-mass model in 1D for which we have
the constitutive relations

fα,β = Ka

(
uβ − uα

s

)
and σ(u) = Kc

du

dx
, (18)

where Ka/s and Kc respectively denote the spring constant and the elastic modulus that we assume
are constants. For the atomistic model, we only consider nearest-neighbor interactions so that we only
have that β = α± 1.

Since ξ = 1, θα = 0, and θα,β = 0 in Ωc = [c, 1], (13) reduces to

−Kc

(
uhj+1 − 2uhj + uhj−1

h

)
=
∫ xj+1

xj−1

bwhj dx for j such that xj ∈ Ωc = (c, 1). (19)

6Recall that here x denotes positions in the reference, or undeformed configuration.
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In the bridge region Ωb, we have

−Kc

{(∫ xj+1

xj

ξ dx

)(
uhj+1 − uhj

h2

)
+

(∫ xj

xj−1

ξ dx

)(
uhj−1 − uhj

h2

)}

−Ka

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα)
{
θα,α+1

(
uα+1 − uα

s

)
+ θα,α−1

(
uα−1 − uα

s

)}

=
∫ xj+1

xj−1

ξbwhj dx+
∑

α such that
xα ∈ (xj−1, xj+1)

wj(xα)θαfα for j such that xj ∈ Ωb = [a, c].

(20)

Since ξ = 0, θα = 1, and θα,β = 1 in Ωa = [0, a], (14) reduces to

−Ka

(
uα+1 − 2uα + uα−1

s

)
= fα for α = 1, . . . , Naa, (21)

and similarly for α = Naa + 1, . . . , Na.
At this point we have to choose a quadrature rule for the finite element method and we have to

define θα,β. The main consideration in the choice of θα,β is symmetry. We follow the approach outlined
in §2.3. First, we choose ξ(x) in Ωb = [a, c] such that ξ(a) = 0 and ξ(c) = 1. Next, we let θ = 1− ξ
in Ωb = [a, c] and define θα,β by using θ. The two natural choices are

θα,β =
θα + θβ

2
and θα,β = θ

(
xα + xβ

2

)
, (22)

where θν = θ(xν).
Regarding the choice of quadrature, the main consideration is to enable the blended method to

pass (possibly with some additional assumptions) a patch test. In the next section we will see that a
prerequisite for this is to use a quadrature rule that is exact for linear functions. Two obvious choices
are the trapezoidal rule and the midpoint rule. Application of these rules to the integrals appearing in
(20), gives ∫ xj+1

xj

ξ dx ≈ h

2
(ξj + ξj+1) or

∫ xj+1

xj

ξ dx ≈ hξ
(
xj + xj+1

2

)
, (23)

where, as usual, ξj = ξ(xj).
The quadrature rules in (23) can be paired with any of the two definitions in (22) to give four

different method configurations. For example, if the trapezoidal rule is paired with the first definition
in (22) then, (20) reduces to

−Kc

{(
ξj+1 + ξj

2

)(
uhj+1 − uhj

h

)
+
(
ξj + ξj−1

2

)(
uhj−1 − uhj

h

)}

−Ka

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα)
{(

θα+1 + θα
2

)(
uα+1 − uα

s

)
+
(
θα + θα−1

2

)(
uα−1 − uα

s

)}

= ξjb(xj) +
∑

α such that
xα ∈ (xj−1, xj+1)

wj(xα)θαfα for j such that xj ∈ Ωb = [a, c].

(24)
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Finally, we have that (17) reduces to

uα = uh(xα) for α such that xα ∈ Ωb = [a, c].

Of course, uh(xα) is determined from the nodal values of uh at the vertices of the elements that contain
xα. Specifically, since we are using continuous piecewise linear finite element spaces, we have that

uα =
(
xα − xj

h

)
uhj+1 −

(
xα − xj+1

h

)
uhj if xα ∈ [xj , xj+1] ⊂ Ωb = [a, c]. (25)

The fully discrete system is given by (19), (21), (24), and (25).

4.2 A patch test for the 1D example

Patch tests are in common use as a basic test for finite element methods. Here, we test whether our
method passes the following simple test: does the uniform strain solution satisfy the discrete system
(19), (21), (24), and (25)?

We choose Ka = Kc, b = 0, and fα = 0. For the corresponding uniform strain solution we have
that, for some constant Q,

uhj+1 − uhj
h

= Q for j = 1, . . . , J − 1 (26)

and
uα+1 − uα

s
= Q for α = 1, . . . , N − 1. (27)

In fact, we have that Q = B − A, where u1 = A and uhJ = B. Note that (26) and (27) are consistent
with (25) in the bridge region, i.e., that (25) and (26) imply (27). For example, using (25) and (26),

uα+1 − uα
s

=
1
s

{(
xα + s− xj

h

)
uhj+1 −

(
xα + s− xj+1

h

)
uhj

−
(
xα − xj

h

)
uhj+1 +

(
xα − xj+1

h

)
uhj

}
=
uj+1 − uj

h
= Q

for xα ∈ [xj , xj + 1) ⊂ [a, c).
With b = 0 and fα = 0, we clearly have that the uniform strain solution (26)–(27) satisfies (19)

and (21), respectively. We have also shown that they satisfy (25).
Now, let us examine (20) when θ(x) and ξ(x) are linear in the bridge region Ωb = [a, c], i.e.,

ξ(x) =
x− a
c− a

and θ(x) = 1− ξ(x) =
c− x
c− a

for x ∈ Ωb = [a, c].

Substituting (26) and (27) into the left-hand side of (20), we obtain, with b = 0, fα = 0, and
Ka = Kc = K,

LHS(20) = −KQ
{

1
h

(∫ xj+1

xj

ξ dx−
∫ xj

xj−1j

ξ dx

)
+

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα) (θα,α+1 − θα,α−1)
}

= −KQ
{

h

c− a
+

∑
α such that

xα ∈ (xj−1, xj+1)

wj(xα)
(
θα,α+1 − θα,α−1

)} (28)
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for j such that xj ∈ Ωb = [a, c], where we have recalled that ξj = ξ(xj) and θα = θ(xα). It is easy to
see that when θ is linear, the identity

θα,α+1 − θα,α−1 =
xα−1 − xα+1

2(c− a)
= − 2s

c− a

holds for both definitions of θα,β in (22), so that, from (28), we obtain

LHS(20) = − KQ

c− a

h− s ∑
xα∈(xj−1,xj+1)

wj(xα)

 . (29)

 
 
 
 xj-1 xj   xj+1 rs s h 

Figure 5: Example showing undeformed positions of atoms within support of shape function centered
at node j. Assume the leftmost atom is a distance rs from node j − 1, for some 0 ≤ r < 1.

Because we assume b = 0 and fα = 0 in the bridge region, formulation (20) passes a patch test
only if (29) is zero for all nodes in the blend region. Consider a particular node j in the blend region,
as shown in Figure 5. It remains for us to compute the sum in (29). Let us assume that h = (M +κ)s,
where h is the mesh spacing and s the lattice constant, for M ≥ 1 an integer and 0 ≤ κ < 1. Of course,
for a commensurate grid, κ = 0. Also assume that the first atom in the support of the shape function
at node j is a distance rs away from node j − 1, for some 0 ≤ r < 1. A tedious calculation shows that

LHS(20) = − KQ

c− a
s2

h


(κ− 1)2 r ≤ κ and 1 + r ≤ 2κ
κ2 − r r ≤ κ and 1 + r > 2κ

κ2 + r − 2κ r > κ and r ≤ 2κ
κ2 r > κ and r > 2κ

 , (30)

for each node j in (a, c). Similar results hold for the nodes at a and c.
Now let us examine a situation where LHS(20) = 0 for all nodes in the blend region. Consider the

case where there is an atom at a and c. Let κ = r = 0, and M ≥ 1 any integer. For this case, we have
r ≤ κ and 1 + r > 2κ, giving LHS(20) = 0 for all j ∈ (a, c). Similar results hold for the nodes at a and
c.

Now consider the slightly more general case where there is an atom at a and c, but let κ = 0.5.
Let us consider a specific node such that r = 0. For this case, we have r ≤ κ and 1 + r ≤ 2κ, giving
LHS(20) 6= 0, and so our method fails the patch test. In the general case of non-commensurate lattice
spacings and finite element grids, our method does not pass the simple patch test. However, the error
incurred is small; it is proportional to the square of the particle lattice spacing s. Note that since the
lattice spacing is determined by the material one is dealing with, one has no control over the size of s.
However, (30) shows that “degree of failure” of the patch test can be made smaller by increasing c−a,
the size of the bridge region. As our error is inversely proportional to h, we can also reduce the error by
increasing h, thus increasing the number of particles in each finite element cell.7

7The number of particles in a finite element can be either M or M + 1.
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We can also bound the norm of the degree of failure of the patch test for all nodes in the bridge
region as follows. Observe that the terms in braces in equation (30) can all be bounded from above by

one. This means that |LHS(20)| ≤ KQ
c−a

s2

h for all nodes in the bridge region. The number of nodes in
the bridge region is approximately (c− a)/h, giving

‖LHS‖2 ≤ KQ
( s
h

)2
, (31)

where ‖LHS‖2 indicates the sum of the squares of LHS(20) for each node in the bridge region. We
again see that even when our method does not exactly pass the patch test, the degree of failure is still
quite small.

Note that the right hand side in (29) will not change if integration is replaced by quadrature in
(20), provided the quadrature rule is exact for linear functions. Consequently, all of the above discussion
about passing or failing of the patch test, and the error bound in (31), apply directly to any of the four
configurations of our method obtained by pairing the definitions in (22) with the quadrature rules in
(23).

5 Quadrature rules and blending functions in higher dimensions

5.1 Choosing the quadrature rule

We now consider the two-dimensional case. We use continuous, piecewise linear finite element spaces
with respect to a partition of Ωb ∪ Ωc into a set of T triangles T h = {∆t}Tt=1. For j = 1, . . . , J , we
let T hj = {t : ∆t ∈ supp(wj)}, i.e., T hj is the set of indices of the triangles sharing the finite element
node xj as a vertex. Thus, we have that∫

supp(wh
j )
F (x) dΩ =

∑
t∈T hj

∫
∆t

F (x) dΩ. (32)

The standard choice for the quadrature rule, since we are using piecewise linear finite element
functions, is the mid-side rule for triangles. Thus, if x̂∆;k, k = 1, . . . , 3, are the vertices of a triangle
∆, we have the quadrature rule ∫

∆
F (x) dΩ ≈ V∆

3

3∑
q=1

F (x∆;q), (33)

where V∆ denotes the volume of the triangle ∆ and

x∆;1 =
x̂∆;1 + x̂∆;2

2
, x∆;2 =

x̂∆;2 + x̂∆;3

2
, and x∆;3 =

x̂∆;3 + x̂∆;1

2
.

We also need a quadrature rule for the boundary integral appearing in (13). Let Ihj = {∆t ∩ Γt :
∆t ⊂ supp(wh

j ) and length(∆t ∩Γt) > 0}, i.e., Ihj is the set of sides of the triangles ∆t in the support

of wh
j that intersect with the boundary Γt. We then have that∫

Γt∩supp(wh
j )
F (x) dΓ =

∑
t such that

∆t ∩ Γt ∈ Ihj

∫
∆t∩Γt

F (x) dΓ. (34)
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Integrals over individual line segments are approximated using the trapezoidal rule. Without loss of
generality, assume that x̂∆;1 and x̂∆;2 are the two boundary vertices of a triangle ∆.8 We then have
that ∫

∆t∩Γt

F (x) dΓ ≈ L∆

2

2∑
q=1

F (x̂∆;q), (35)

where L∆ denotes the length of the boundary segment ∆t ∩ Γt.
Using (32)–(35) in (13) results in

−
∑
t∈T hj

{
V∆t

3

3∑
q=1

(
ξ(x∆t;q)σ

(
(x∆t;q),∇uh(x∆t;q)

)
: ∇wh

j (x∆t;q)
)}

+
∑
α∈Sj

∑
β∈Nα

θα,βfα,β ·wh
j (xα)

= −
∑
t∈T hj

{
V∆t

3

3∑
q=1

(
ξ(x∆t;q)bc(x∆t;q) ·wh

j (x∆t;q)
)}

−
∑
t∈T hj

L∆t

2

{ 2∑
q=1

(
ξ(x∆t;q)t̃(x∆t;q) ·wh

j (x∆t;q)
)}

−
∑
α∈Sj

θαf eα ·wh
j (xα) for j = 1, . . . , J.

(36)

Thus, in two dimensions, the fully discretized system is given by (14), (15), (17), and (36).
We note that if the continuum material is homogeneous, then σ = σ(∇u). Then, since both uh

and wh
j are linear functions in any triangle, the first term of (36) simplifies to

∑
t such that
∆t ∈ T hj

{
V∆t

3

3∑
q=1

(
ξ(x∆t;q)

)
σ
(
∇uh(x̃∆t)

)
: ∇wh

j (x̃∆t)
}
,

where x̃∆t is any point in ∆t.
In three dimensions, one cannot use mid-face or mid-edge rules as we can in one and two dimensions,

even for uncoupled continuum problems. Instead, one must use rules for which at least some of the
quadrature points are in the interior of tetrahedra. Other than this, the development of a fully discretized
method follows the same process that led to (36) in the two-dimensional case.

5.2 Choosing the blending functions

We now want to give a recipe for choosing the blending functions ξ(x) for x ∈ Ωb and θα,β and θα
for xα ∈ Ωb that appear in (13).9 In two dimensions, we triangulate the bridge region Ωa into the set
of triangles having vertices {xb;i}li=1. In practice, this triangulation is the same as that used for the
finite element approximation of the continuum model in the bridge region, but, in general, it may be
different.10 We then choose ξ(x) = ξh(x), where ξh(x) is a continuous, piecewise linear function with

8By triangulating into corners, we can guarantee that no triangle has three vertices on the boundary.
9Of course, in Ωa we have that ξ = 0, θα,β = 1, and θα = 1 and in Ωc we have that ξ = 1, θα,β = 0, and θα = 0.

10For the two triangulations to be the same, we must have that the finite element triangulation is conforming with
the interfaces between the bridge region and the atomistic and continuum regions, i.e., those interfaces have to be
made up of edges of triangles of the finite element triangulation.
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respect to this triangulation. The nodal values of ξh(x) are chosen as follows. First, set ξh(xb;i) = 0 at
all nodes xb;i ∈ Ωa∩Ωb, i.e., on the interface between the atomistic and bridge regions and ξh(xb;i) = 1
at all nodes xb;i ∈ Ωb ∩ Ωc, i.e., on the interface between the continuum and bridge regions. For the
remaining nodes xb;i ∈ Ωb, there are several ways to choose the value of ξh. One way is to choose

ξh(xb;i) =
dist
(
xb;i,Ωa ∩ Ωb

)
dist
(
xb;i,Ωa ∩ Ωb

)
+ dist

(
xb;i,Ωb ∩ Ωc

) for xb;i ∈ Ωb.

Once ξh(x) is chosen, we choose θ(x) = θh(x) = 1− ξh(x) for all x ∈ Ωb. Then, we can choose

θα = θh(xα) and θα,β =
θh(xα) + θh(xβ)

2
or θα,β = θh

(xα + xβ
2

)
.

6 Computational experiments

In this section we report on the results of some simple computations for one-dimensional problems that
illustrate that our method “properly” blends forces. In addition, we also demonstrate what can happen
if forces are not “properly” blended. We refer to these as Method A and Method B, respectively. We
construct the discrete system as described in Section 3. The domain Ω = [0, 1] consists of an atomistic
domain [0, a) and a finite element domain (c, 1] joined by the bridge domain [a, c]. The displacement of
a particle in the bridge region is constrained to be the same as the continuum displacement at that point.
A unit point force is applied at the finite element node at the end point x = 1 and the displacement of
the particle located at the end point x = 0 is set to zero. Using either the atomistic or finite element
models, the resulting solution is one of uniform strain. Thus, we want a blended model to also recover
this solution.

We provide more details on Methods A and B discussed above. Method A developed in Sections 2
and 3 is based on the force blending described in (11). Method B is based on a force blending approach
that is a “hybrid” between that described in (5) and (11). Specifically, in the bridge region, we use the
blended model

(
∇ · ξσ + ξbc

)
+ θα

( ∑
β∈Nα

fα,β + f eα
)

= 0 if x = xα, α = 1, . . . , N(
∇ · ξσ + ξbc

)
= 0 otherwise.

(37)

Comparing with (5) and (11), we see that the blending done in (37) is the same as that in (5) for the
atomistic and continuum contribution and is the same as that in (11) for continuum contribution. We
use Method B to illustrate what happens if one of the contributions to the blended model is “improper,”
e.g., does not satisfy Newton’s third law.11

We consider a local (nearest-neighbor) atomistic model in Section 6.1, and compute the associated
error bounds from Section 4.2 in Section 6.2. In Section 6.3 we consider a nonlocal atomistic model.

6.1 Examples for local (nearest-neighbor) interactions

The first set of computational examples correspond to the situation considered in Section 4.2, i.e., a one-
dimensional linear spring-mass atomistic model coupled to a one-dimensional linear elasticity continuum
model. Only nearest neighbor interactions are present, i.e., only the particles to the immediate left and
right of a particle exert a force on that particle. In this section and the next, we set K = Ka = Kc = 100,
giving a strain of Q = 0.01.

11For the model based on (37), it is the atomistic contribution that is in violation.
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Example 1. We have the simplest case possible: the lattice spacing s is equal to the mesh width
h so that M = 1 and κ = r = 0, i.e., in the bridge region, there is a finite element node at every
particle position. Thus, the particle lattice and finite element grid are commensurate with no offset.
We also have a particle and a finite element node located at both x = a and x = c, the end points of
the bridge region. For Figure 6, we chose of h = s = 0.05, 16 particles, and 14 finite element nodes so
that a = 0.35 and c = 0.8. That figure shows the computed displacements and strains for Methods A
and B. Method A, the one based on (11), recovers the patch test solution; this is in agreement with the
discussion of Section 4.2. On the other hand, Method B, the one based on (37), is unable to recover
the patch test solution. Even for this simple test problem, the solution obtained using this method is
inaccurate.
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Figure 6: Displacements and strains for Example 1; ∗ particle positions; � finite element nodes. Vertical
bars denote the blend region.

Example 2. The set up of this example is the same as for Example 1, except that we now set the
mesh width h to be twice the lattice spacing s so that M = 2. We still have κ = r = 0. Again, the
particle lattice and finite element grid are commensurate with no offset and we have a particle and a
finite element node located at both x = a and x = c, the end points of the bridge region. In the bridge
region, the particle displacements are slaved to the continuum displacement through (25). We choose
s = 0.05, 15 particles, and 8 finite element nodes so that now a = 0.3 and c = 0.7. In Figure 7, we
show the computed displacements and strains. Method A based on (11) passes the patch test; this is
in agreement with the discussion of Section 4.2. Once again, Method B (37) yields inaccurate results.

Example 3. We next set h = 1.5s so that M = 1 and κ = 0.5, i.e., the finite element grid and the
particle lattice are not commensurate. r will vary from node to node. We still have both a particle and
a finite element node located at the points x = a and x = c. We choose s = 1/30, 20 particles, and

16



0 0.2 0.4 0.6 0.8 1
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

undeformed position

di
sp

la
ce

m
en

t

displacement vs. position

(a) Displacement for Method A

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

undeformed position

st
ra

in

strain vs. position

(b) Strain for Method A

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

undeformed position

di
sp

la
ce

m
en

t

displacement vs. position

(c) Displacement for Method B

0 0.2 0.4 0.6 0.8 1
0.005

0.01

0.015

0.02

0.025

0.03

undeformed position

st
ra

in

strain vs. position

(d) Strain for Method B

Figure 7: Displacements and strains for Example 2; ∗ particle positions; � finite element nodes. Vertical
bars denote the blend region.

15 finite element nodes so that a = 0.3 and c = 0.6. In Figure 8, we show the computed displacements
and strains. For this non-commensurate example, Method A no longer passes the patch test; this is in
agreement with the discussion of Section 4.2. One has to examine the strain results to notice this since
the errors are small enough that they cannot be seen through a visual inspection of the displacement
results. In addition, the “degree of failure” for Method A is pronouncedly less than that for Method
B. We remark that for Method A, an inspection of the strain results suggest that a post-processing
technique, e.g., local averaging over neighboring elements and neighboring particles, may lessen the
degree of failure.

Example 4. This example is identical to Example 3, except that no particle is located at x = a,
the left-most finite element grid point, and x = c, the rightmost finite element grid point in the bridge
region. In Figure 9, we show computed displacements and strains for a case of 21 atoms and 16 nodes
for Methods A and B. In this particular example, the atom 20 from the left is not located at c, hence
its associated blending weight θa(x20) is not zero. To avoid the ghost forces associated with a missing
bond to the right, another atom is added to the right of node c. Its blending weight θa(x21) is zero,
since the atom is contained in Ωc, hence we need not be concerned with its missing right bond.

6.2 Error bounds for local (nearest-neighbor) interactions

In this section we investigate numerically the bounds shown in section 4.2. We assume a fixed atomic
lattice (that is, we hold s fixed) and vary the finite element mesh width h. We again choose the domain
[0, 1] with a = 0.25 and c = 0.75. In all cases, our lattice constant will be s = 0.25 · 2−6. The mesh
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Figure 8: Displacements and strains for Example 3; ∗ particle positions; � finite element nodes. Vertical
bars denote the blend region.

spacing h varies as h = 0.25 · 2−n, with n = 1, . . . , 6.
Example 5. We consider LHS(24) for a specific node, namely j = 2, the finite element node to

the immediate right of the node at x = a. For this node, the mesh refinement path we have chosen
guarantees that r = 0 always, although κ varies with n. In Table 1 we show the numerically computed
value of LHS(24) for this node using (29), as well as the theoretical value from (30). We see that the
formulae are exact.

Example 6. In this example, we compute ‖LHS‖2 as described in Section 4.2, and compare with
the theoretical upper bound in (31). For the refinement path described above, a plot of both values is
shown in Figure 10. Although the bound is loose, we see ‖LHS‖ decreases with 1/h2.

6.3 Examples for a non-local force interaction case

We next consider, for Method A only, the case where there is an interaction second nearest-neighbor
particles. We still use the constitutive relations in (18). We choose the constitutive constant K1 = 50
for nearest-neighbor interaction terms and K2 = 25 for second nearest-neighbor interaction terms. We
then choose Kc = K1 + 2K2 = 100 so that the strain energies match exactly in the case of a uniform
deformation field, and so that the desired strain is Q = 0.01, as in the previous examples. In other
respects, the set-up for the computations is the same as that in Section 6.1 for the local interaction
model. We also use the same four examples for this non-local interaction model as were used for the
local interaction model in Section 6.1. Thus, we have the following examples (see Figures 11-14)

Example 7. h = s, 16 particles, and 14 finite element nodes.
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Figure 9: Displacements and strains for Example 4 ; ∗ particle positions; � finite element nodes.
Vertical bars denote the blend region. Note that a single (constrained) atom has been included to the
right of node c to correct for ghost forces.

Example 8. h = 2s, 15 particles, and 8 finite element nodes.
Example 9. h = 1.5s, 19 particles, and 15 finite element nodes.
Example 10. h = 1.5s, 20 particles plus a ghost particle, and 16 finite element nodes.

Where necessary, “ghost” particles are included in Ωc to counteract ghost forces.

7 Concluding remarks

We have presented a force-based blending method for coupling atomistic and continuum models. We
have also studied its properties through some simple patch tests and preliminary computational examples
in one dimension. The model has several good features. For example, the method properly accounts
for the forces acting at points in the bridge region between the atomistic and continuum regions and it
implicitly mitigates ghost force effects. However, there are several directions for further study. Certainly,
one direction is to perform many additional computational tests in higher dimensions and to use the
method for some applications problems.

Perhaps the most important issue to be addressed is the relaxation of the constraints in (17).
Although that constraint set leads to a mathematically well-posed model, it can be, in some cases,
physically over-constraining. This is recognized in previous related studies, e.g., [1, 4, 11], where those
constraints are relaxed through the use of Lagrange multipliers. The net effect is that, in the bridge
region, the particle displacements are not completely slaved to the finite element displacements, but
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n h κ LHS(24) LHS(24)
from (29) from (30)

1 1.25× 10−1 0.500 −4.70× 10−7 −4.70× 10−7

2 6.25× 10−2 0.250 −2.35× 10−7 −2.35× 10−7

3 3.13× 10−2 0.125 −1.18× 10−7 −1.18× 10−7

4 1.56× 10−2 0.563 −2.88× 10−6 −2.88× 10−6

5 7.81× 10−3 0.781 −1.44× 10−6 −1.44× 10−6

6 3.91× 10−3 0.391 −9.19× 10−6 −9.19× 10−6

Table 1: Example 6 from Section 6.2 showing LHS(24) computed numerically using (29) as well as
with the explicit formulae in (30). For the rightmost column, either (30)1 or (30)2 was used, based
on the magnitude of κ.
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Figure 10: Example 7 from Section 6.2 showing ‖LHS‖2 vs. 1/h2, and the upper bound for this
expression from (31).

instead are only slaved in an average (over the particles in each element) sense. A similar approach can
be developed for our blending method.
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Figure 11: Displacements and strains for Example 7 at the particle positions ∗ and the finite element
nodes �. Vertical bars denote the blend region.
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Figure 12: Displacements and strains for Example 8 at the particle positions ∗ and the finite element
nodes �. Vertical bars denote the blend region.
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Figure 13: Displacements and strains for Example 9 at the particle positions ∗ and the finite element
nodes �. Vertical bars denote the blend region.
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Figure 14: Displacements and strains for Example 10 at the particle positions ∗ and the finite element
nodes �. Vertical bars denote the blend region.
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